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1 SECIRD Model

The SECIRD model is an extension to the SEIR deterministic model for modelling the spread of
an infectious disease. In it, a population is broken into the following non-overlapping groups
corresponding to stages of the disease:

• Susceptible (S). The subpopulation susceptible to acquire the disease.
• Exposed (E). The subpopulation that has been infected with the virus, but not yet in an

infective state capable of transmitting the virus to others.
• Carrier (C). The subpopulation that has been infected with the virus but are symptomatic

while being capable of infecting others.
• Infectious (I). The subpopulation that has acquired the virus and can infect others, and can

also possibly die.
• Recovered (R). The subpopulation that has recovered from infection and presumed to be no

longer susceiptible to the disease.
• Dead (D). The subpopulation that suffers disease-induced death.

A above model for the spread of an infectious disease in a uniform population is given by the
deterministic SECIRD equations
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The rate processes are modeled as follows.
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SECIRD Model

• (1 − u) βSK
N is the rate at which susecptible population encounters the infected population

resulting in trasmission of the disease. S is the size of the susceptible population. β is a the
model parameters with units of 1/day. K is the probability of disease transmission in contact
between a susceptible and infectious/carrier subject.

• u describes the effectiveness on any public health interventions to control transmission of
the disease. u = 0 corresponds to no effective public health interventions, u = 1 implies
total elimination of disease transmission. u is also dependent upon the C, the population of
carriers. z represents the effectiveness of preseventive measures.

• αE is the rate at which exposed population becomes infective, where E is the size of the
exposed population. The average period of time in the exposed state is the incubation period
of the disease, and equal to 1

α .
• σ represents the probabilityt for an exposed population to become a carrier.
• γ represents the rate at which infected/carrier population recovers and becomes resistent to

further infection. The average time period is 1
γ

• I is the size of the infective population.
• δ represents the mortality probability.

In [1]: !pip3 install scipy numpy seaborn matplotlib --user

Requirement already satis�ed: scipy in /home/whatsis/.local/lib/python3.6/site-packages (1.4.1)
Requirement already satis�ed: numpy in /home/whatsis/.local/lib/python3.6/site-packages (1.16.1)
Requirement already satis�ed: seaborn in /home/whatsis/.local/lib/python3.6/site-packages (0.9.0)
Requirement already satis�ed: matplotlib in /usr/local/lib/python3.6/dist-packages (2.2.4)
Requirement already satis�ed: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn) (0.24.2)
Requirement already satis�ed: cycler>=0.10 in /home/whatsis/.local/lib/python3.6/site-packages (from matplotlib) (0.10.0)
Requirement already satis�ed: kiwisolver>=1.0.1 in /home/whatsis/.local/lib/python3.6/site-packages (from matplotlib) (1.0.1)
Requirement already satis�ed: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /home/whatsis/.local/lib/python3.6/site-packages (from matplotlib) (2.3.1)
Requirement already satis�ed: pytz in /usr/lib/python3/dist-packages (from matplotlib) (2018.3)
Requirement already satis�ed: python-dateutil>=2.1 in /home/whatsis/.local/lib/python3.6/site-packages (from matplotlib) (2.8.0)
Requirement already satis�ed: six>=1.10 in /home/whatsis/.local/lib/python3.6/site-packages (from matplotlib) (1.12.0)
Requirement already satis�ed: setuptools in /home/whatsis/.local/lib/python3.6/site-packages (from kiwisolver>=1.0.1->matplotlib) (45.2.0)

In [ ]: import numpy as np
from scipy.integrate import odeint
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import matplotlib.pyplot as plt
import seaborn as sns

In [95]: def step(c, t, t_social_distancing):
return 1-c if t >= 10*t_social_distancing else 0

def deriv(x, t, z, u, alpha, beta, gamma, delta, sigma):
s, e, c, i, r, d = x
dsdt = -(1 - u*step(c, t, z)/100) * beta * s * i
dedt = (1 - u*step(c, t, z)/100) * beta * s * i - alpha * e
dcdt = sigma * alpha * e - gamma * c
didt = (1 - sigma) * alpha * e - gamma * i
drdt = (1 - delta) * gamma * i + gamma * c
dddt = delta * gamma * i
return [dsdt, dedt, dcdt, didt, drdt, dddt]

In [60]: def run(R0, Mr, As, t_incubation, t_recovery, N, n, t_social_distancing, u_social_distancing):
# initial number of infected and recovered individuals
e_initial = n/N
c_initial = 0.00
i_initial = 0.00
r_initial = 0.00
d_initial = 0.00
s_initial = 1 - e_initial - i_initial - r_initial - d_initial - c_initial

# Inititalize variables
alpha = 1/t_incubation
gamma = 1/t_recovery
beta = R0*gamma
delta = Mr
sigma = As

t = np.linspace(0, 350, 350)
x_initial = s_initial, e_initial, c_initial, i_initial, r_initial, d_initial
s, e, c, i, r, d = odeint(deriv, x_initial, t,

args=(t_social_distancing, u_social_distancing,
alpha, beta, gamma, delta, sigma)).T

s0, e0, c0, i0, r0, d0 = odeint(deriv, x_initial, t, args=(0, 0, alpha, beta, gamma, delta, sigma)).T

# plotting the data
�g = plt.�gure(�gsize=(16, 8))
ax = [�g.subplots()]

pal = sns.color_palette()

ax[0].stackplot(t/7, N*s, N*e, N*c, N*i, N*r, N*d, colors=pal, alpha=0.6)
ax[0].set_xlabel('Weeks after Inital Exposure')
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ax[0].set_xlim(0, t[-1]/7)
ax[0].set_ylim(0, N)
ax[0].legend([

'Susceptible',
'Exposed',
'Carrier (Asymptomatic)',
'Infectious (symptomatic)',
'Recovered',
'Dead'],
loc='best')

ax[0].plot(np.array([t_social_distancing, t_social_distancing]), ax[0].get_ylim(), 'r', lw=3)
ax[0].plot(np.array([0, t[-1]])/7, [N/R0, N/R0], lw=3, label='herd immunity')
ax[0].annotate("Start of social distancing",

(t_social_distancing, 0), (t_social_distancing + 1.5, N/10),
arrowprops=dict(arrowstyle='->'))

ax[0].annotate("Herd Immunity without social distancing",
(t[-1]/7, N/R0), (t[-1]/7 - 8, N/R0 - N/5),
arrowprops=dict(arrowstyle='->'))

#plt.tight_layout()
return ax

1.1 Default Parameters

Parameter Symbol Typical

Reproduction number R0 2.4
Incubation period (days) τincubation 5.1
Recovery period (days) τrecovery 3.3
Mortality Rate Mr 0.2
Asymptomatic Rate As 0.2
Population N 22,09,000
Initial number exposed n 10
Mitigation by preventive measures u 0.2
Start of social distancing following exposure (weeks) tsd 12

1.2 Variation in Reproduction Number

We begin by changing the R0, reproduction number of the disease at hand. We choose the three
values from the expected range of R0 for COVID-191. In general, R0 for an infection can be thought
of as the expected number of cases directly generated by one case in a population where all indi-
viduals are susceptible to infection. Below graphs reveal that change in R0 leads to exponential
change in net infected individuals. However, most of them are able to recover successfully.

In [74]: R0s = [1.9, 2.4, 4.2]

for R0 in R0s:
ax = run(R0, 0.2, 0.2, 5.1, 3.3, 2209000, 3, 12, 20)
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ax[0].set_title('Susceptible, Recovered and Dead Populations \
with {0:1.1f} as Reproduction Number'.format(R0))
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1.2.1 References

[1] Liu T, Hu J, Kang M, Lin L (January 2020). “Time-varying transmission dynamics of Novel
Coronavirus Pneumonia in China”. bioRxiv. doi:10.1101/2020.01.25.919787.

1.3 Variation in Incubation Period

Next, we vary the incubation period for our disease. As we know that the rate of transition from
exposed to either of the infected/carrier stage is inversely proportional to τincubation, the spread of
disease gets restricted as its value becomes larger.

In [77]: Incs = [3.4, 5.1, 14.0]

for inc in Incs:
ax = run(2.4, 0.2, 0.2, inc, 3.3, 2209000, 3, 12, 20)
ax[0].set_title('Susceptible, Recovered and Dead Populations \

with {0:1.1f} days of incubation period'.format(inc))
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1.4 Variation in Recovery Period

Next, we vary the recovery period for a infected/carrier. As we know the rate of recovery τrecovery
is inversely proportional to γ, and β which are the rate of transition from susceptible to exposed
stage and exposed to either of the infected/carrier stage respectively. We see that with larger
τrecovery, i.e. with a lower value of γ the spread of disease increases.

In [78]: Recovs = [3.3, 8.1, 14.2]

for rec in Recovs:
ax = run(2.4, 0.2, 0.2, 5.1, rec, 2209000, 3, 12, 20)
ax[0].set_title('Susceptible, Recovered and Dead Populations \

with {0:1.1f} days of recovery period'.format(rec))
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1.5 Variation in Mortality Rate

Next, we vary Mr, the mortality rate. As suggested from it name, it only affects the total number
of patients dying due to the disease.

In [46]: Rts = [0.8, 0.4, 0.2]
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for rt in Rts:
ax = run(2.4, rt, 0.2, 5.1, 3.3, 2209000, 3, 12, 20)
ax[0].set_title('Susceptible, Recovered and Dead Populations\

with {0:1.1f} as Mortality Rate'.format(rt))
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1.6 Variation in Asymptomatic Rate

As we increase the asymptomatic rate, my inital guess was that it should have increased the dis-
ease spread but somehow it actually decreases the spread. Will have to look more into it. :(

In [102]: Rts = [0.1, 0.2, 0.3]

for rt in Rts:
ax = run(2.4, 0.2, rt, 5.1, 3.3, 2209000, 3, 12, 20)
ax[0].set_title('Susceptible, Recovered and Dead Populations with {0:1.2f} as Asymptomatic Rate'.format(rt))
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1.7 Variation in Initial Numbers Exposed

With increase in initial number of exposures, spread of disease increases.

In [76]: Incs = [10, 100, 1000]

for inc in Incs:
ax = run(2.4, 0.2, 0.2, 5.1, 3.3, 2209000, inc, 12, 20)
ax[0].set_title('Susceptible, Recovered and Dead Populations with \

{0:1.1f} initally exposed persons'.format(inc))
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1.8 Variation in the starting preventive measures

Earlier the preventive memasures are put in place, lesser is the spread.

In [67]: Incs = [2, 12, 20]

for inc in Incs:
ax = run(2.4, 0.2, 0.2, 5.1, 3.3, 2209000, 10, inc, 20)
ax[0].set_title('Susceptible, Recovered and Dead Populations where \

preventive measures started after week {0:1.1f} '.format(inc))
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1.9 Variation in the effectiveness of preventive measures

Efficiency of the preventive measure plays a more vital role in controlling the disease spread.
However, it doesn’t matter if preventuve measures are being set at a much later time, i.e. when
sufficient spread has already taken place.

In [72]: Incs = [20, 50, 100]

for inc in Incs:
ax = run(2.4, 0.2, 0.2, 5.1, 3.3, 2209000, 10, 10, inc)
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ax[0].set_title('Susceptible, Recovered and Dead Populations where \
e�ectiveness of preventive measures is {0:1.1f}%'.format(inc))
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