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ABSTRACT

A limiting factor for readout fidelity for superconducting qubits is the relaxation of the qubit to the
ground state before the time needed for the resonator to reach its final target state. To reduce this effect
and further improve the readout contrast, excited state promoted (ESP) readout. In this work, different
classification algorithms like k-nearest neighbors, decision trees, support vector machines, etc., were
used on the real data from five qubit IBMQ devices to measure their effectiveness to implement
efficient single-qubit and multi-qubit discrimination methods. These methods were compared to deep
neural networks such as feedforward neural networks based on their qubit-state-assignment fidelity
performance, robustness to readout crosstalk, and training time.

Keywords Quantum Computing · Qubit Readout · Machine Learning

1 Introduction

Quantum computers are speculated to have a computational edge over their classical counterparts in solving problems
in various areas such as quantum chemistry [1], molecular simulations [2], machine learning [3], etc. To achieve
such an advantage, quantum hardware requires millions of good quality qubits. However, the present-day hardware,
generally referred to as noisy intermediate-scale quantum (NISQ) hardware, contains not more than a hundred qubits,
which severely limits their computational capabilities. The major problem in scaling up these devices is qubit control
and readout difficulty. Hence, considerable work is required to retain and further improve these systems if we want
to increase their size and complexity, particularly for combating errors at all stages of the computational pipeline:
initialization, execution, and readout.

In this work, we present machine-learning-enabled qubit-state discrimination utilizing excite-state-promoted (ESP)
readout [4], which a way to improve qubit readout fidelity in a scalable way by using extra levels of transmon, i.e.,
exciting the |1⟩ state to the |2⟩ state for readout. This essentially changes the discrimination problem from a two-state
(Fig. 2a) system to a three-state (Fig. 2b) system. We evaluate the qubit-state discrimination performance of various
machine learning models such as k-nearest neighbors (KNN), decision trees, Gaussian naive Bayes (GNB), linear
and quadratic discriminant analysis (LDA and QDA), and a fully-connected neural network (FNN). To evaluate these
different qubit-state discriminator techniques, we use ESP readout outputs from five of the five-qubit IBMQ hardware:
ibmq_rome, ibmq_bogota, ibmq_merlin, ibmq_belem and ibmq_quito. We show that for these systems, we examine the
qubit-state assignment performance using a confusion matrix and the cross-fidelity metric. We show that classifiers
based on FNN and GNB perform out par LDA and QDA, which are standardly used for the multi-class classification
such as multi-qubit discrimination.

∗This work has been done as part of the Qiskit Advocate Mentorship Program (QAMP).

https://orcid.org/0000-0001-7020-0305


Machine Learning based Discrimination for Excited State Promoted Readout

(a)

/2 0 /2
Superconducting Phase ( )

En
er

gy
 (

r)

0

1

2

3

4

5

r

|2

|1

|0

(b)

/2 0 /2
Superconducting Phase ( )

En
er

gy
 (

r)

0

1

2

3

4

5

12

01

|2

|1

|0

Figure 1: (a) Energy levels are equidistantly spaced by ℏωr in the energy potential for the quantum harmonic oscillator
(QHO). (b) Inclusion of Josephson inductance leads to non-equidistant energy levels as it changes the quadratic energy
potential (dashed purple) into sinusoidal potential (solid green), i.e., by inclusion of higher order terms. The sufficient
difference in the energy spacing ℏω01 and ℏω12 allows us to form computational basis by isolating two lowest energy
levels |0⟩ and |1⟩ of the transmon. Both figures have been adapted from [5].

2 Theory of Qubits and their Readout

Over the past two decades, superconducting qubits have emerged as a leading quantum computing platform which
has been used by various leading industries such as IBM [6], Google [7], Rigetti [8], etc. The basis of quantum
hardware for all of them is a particular kind of superconducting qubit, popularly known as the transmon qubit, which is
a superconducting circuit composed of Josephson junction and capacitor. The Hamiltonian of such a system can be
described as:

H = 4ECn
2 − EJ cos(ϕ), (1)

where EC , EJ denote the energies of the capacitor and Josephson junction present in the superconducting circuit, n is
the reduced charge number operator and ϕ is the reduced flux across the Josephson junction with ℏ = 1.

2.1 Transmon qubits

In principle the variable ϕ can acquire a range of values, but in the regime where ϕ → 0, the system begins to behave as
a transmon qubit. This allows us to approximate H (1) by performing a taylor expansion of the EJ cos(ϕ) (ignoring
constant terms):

lim
ϕ→0

EJ cos(ϕ) ≈ 1

2!
EJϕ

2 − 1

4!
EJϕ

4 +O(ϕ6). (2)

where the quadratic term ϕ2 defines the standard quantum harmonic oscillator (1a), and the next subsequent higher-order
terms contribute to anharmonicity in the system. This is important for the system for isolating the two lowest energy
levels |0⟩ and |1⟩ and determining a computation basis (1b), which would not be possible in the case of the standard
quantum harmonic oscillator due to presence of the equidistant energy levels.

We can further show that the system now resembles a Duffing oscillator with the Hamiltonian HD by using the relations
n ∼ (a− a†), ϕ ∼ (a+ a†), where a and a† are creation and annihilation operators for the qubit system:

H = ωa†a+
α

2
a†a†aa, (3)
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Here, ω corresponds to the ω01, i.e., the excitation frequency from the ground state to the first excited energy state
(0 → 1), and α is the anharmonicity between the excitation frequencies ω01 and ω12. By tuning the |α| to sufficiently
large values, one can isolate the standard 2-dimensional subspace by suppressing leakage to the higher energy states (1).

2.2 Dispersive Readout

The ability to perform high fidelity readout of the qubit states is a crucial cornerstone of any quantum processor. The
most common technique utilized in the circuit QED architecture is that of dispersive readout. In this method, the
qubit (the quantum system) is entangled with an observable of a superconducting resonator (the probe), allowing us to
gain information about the qubit state by interrogating the resonator - rather than directly interacting with the qubit.
Therefore, readout performance depends on the signal-to-noise ratio of a microwave pulse tone sent to the resonator
while minimizing the unwanted back-action on the qubit. In this regard, the qubit-resonator interaction is described by
the Jaynes–Cummings Hamiltonian -

HJC = ωr

(
a†a+

1

2

)
+

ωq

2
σz + g(σ+a+ σ−a

+) (4)

Here, ωr and ωq are the resonator and qubit frequencies, respectively. Whereas the transverse qubit-coupling resonator
rate is shown by g and a†(a) represents the creation (annihilation) operator for the qubits.

Now skipping some complex physics regarding how measurement is done experimentally, we rather focus on the
readout event itself. It begins with a short microwave tone directed to the resonator at the resonator probe frequency
ωRO (the carrier frequency), which acquires the following form after interacting with the resonator:

s(t) = ARO cos(ωROt+ θRO) = Re
{
AROe

j(ωROt+θRO)
}

(5)

where ARO and θRO are the qubit-state dependent amplitude and phase that we wish to measure and Re represents the
real part of an expression. We can rewrite equation 5 in the “phasor” notation as follows:

s(t) = Re

{
AROe

(θRO)︸ ︷︷ ︸
phasor

ej(wROt)

}
(6)

To perform qubit readout, we want to measure the “in-phase” component I and a “quadrature” component Q of the
complex number represented by the phasor, to determine the amplitude ARO and the phase θRO:

AROe
(θRO) = ARO cos(θRO) + jARO sin(θRO) ≡ I + jQ (7)

2.3 Discriminator

For performing the readout, we extract the I and Q components from the readout signal, which we can plot on an I-Q
plane, similar to one shown in Fig. 2. It is seen that corresponding to the actual state of the qubit, the I-Q values tend to
lie in specific clusters on the plane, each corresponding to one specific energy state. For example, in Fig. 2a, we see that
two clusters marked by blue and red points correspond to the qubit states |0⟩ and |1⟩ states, respectively. Now, given the
IQ data on the plane, we incorporate a discriminator (or a classifier) to find the boundaries of the cluster formed by
each state, so that for the next incoming IQ output, we can predict the corresponding unknown state with sufficient
confidence.

3 Excited State Promoted Readout

Excited State Promoted (ESP) readout is a way to improve qubit readout fidelity for superconducting qubits in a scalable
way by using extra level of transmon, i.e., by exciting the |1⟩ state to the |2⟩ state for readout. This essentially changes
the discrimination problem from a two-state system to a three-state system.
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(a)

(b)

Figure 2: IQ plots for qubit states and their classification via a discriminator. The data presented here was acquired
from ibmq_armonk.

3.1 Theory

In excited state promoted readout, we take advantage of higher excited states of the transmon by exciting the |1⟩ state to
|2⟩ and then perform our measurements since |2⟩ → |0⟩ transition should be much more difficult. In order to do this,
we first calibrate the frequencies amplitude of the π-pulse required for the |0⟩ → |1⟩ and the |1⟩ → |2⟩ transition using
frequency spectroscopy and rabi experiment, respectively. Doing it for the former transition is straightforward and
requires building only a gaussian wave packet. However, to assist the latter one, we use a sinusoidal sideband which
allows us to change the local oscillator frequency without manually setting it.

3.2 Example

In Fig. 2, we present the ESP readout for the ibmq_armonk hardware, which is an open-access Canary r1.2 one-qubit
hardware. The approximate ω01 frequency is 4.972 GHz, and the anharmonicity α is 347.19 MHz. We show the IQ
plots for the |0⟩-|1⟩ state discrimination in Fig. 2a and the corresponding discrimination by the linear discriminant
analysis (LDA). In the subsequent experiment, we use ESP and show the IQ plots in Fig. 2b. Notice, the overlap
(marked by red crosses) between the |0⟩ and |1⟩ states decreases by exciting the |1⟩ state to |2⟩ state.

4 Machine Learning based discriminators

In principle, we can use various machine learning methods to classify between the system’s different states. The first
model that we look at is the k-nearest neighbor (KNN) classifier, which implements learning based on the k nearest
neighbors of the given point for which a decision has to be taken. In our case, we use k = 50, and for determining
proximity between the points, we calculate the “manhattan distance”. The second model that we look at is the decision
tree classifier (DTC), where the decision for the data is taken by continuously splitting it according to a certain parameter
or set of rules. In our model, we use entropy to measure the quality of a split and restrict the depth of the decision
tree to 20. The third model is the classifier based on the Gaussian Naive Bayes algorithm (GNB). The fourth and fifth
models are the linear, and quadratic discriminant analysis (LDA and QDA) based classifiers. The final model we look
at is a deep learning-based model called the fully connected neural network (FNN). Our FNN architecture (Fig. 3) is
composed of three hidden layers (1st, 2nd, and 3rd layer consist of 1000, 500, and 300 nodes, respectively) that use
ReLU activation functions, and the 3N output layer has softmax activation. The network is trained (validation-training
set ratio of 0.3) using the Adam optimizer with categorical cross-entropy as the loss function.

4



Machine Learning based Discrimination for Excited State Promoted Readout

1

11121314 151617181920

234 5678910
Input Units: 10
Activation: relu

21222324 252627282930

Units: 1000 (+990 more)
Activation: relu

31323334 353637383940

Units: 500 (+490 more)
Activation: relu

4142434445464748 4950

Units: 300 (+290 more)

Output Units: 243 (+233 more)

Activation: relu

Activation: softmax

Figure 3: Fully connected Neural Network mdoel. It composes of three hidden layers of 1000, 500, and 300 nodes,
respectively, that use ReLU activation functions. The 3N output layer has softmax activation.

5 Results

In this section, we describe the details of our results for our five-qubit excited-state promoted (ESP) readout experiment
results, comparing the performances of our six models described in the previous section: KNN, DTC, GNB, LDA, QDA
and FNN, for the five 5-qubit IBMQ hardware: ibmq_rome, imbq_bogota, ibmq_belem, ibmq_quito, and ibmq_manila.

5.1 Data Accumulation and Preparation

To perform the excited-state promoted (ESP) readout experiments, we first performed frequency calibrations and
amplitude calibration experiments for each individual qubit qi on each given hardware to determine: ω01, ω12, A01

and A02, for building the π01 and π12 pulses. In the next step, we build the pulses schedule for 3N possible states,
where N = 5 in our case. We show an example pulse schedule for preparing the state |22102⟩ on ibmq_bogota in Fig.
6. We perform 2048 shot measurements for every such state to obtain the IQ data corresponding to each state and
shot. This makes our overall data from given hardware of the size (243, 2048, 5). We flatten this data for preparing
test and train sets to (243× 2048, 10), where 10 comes from splitting each of the I + jQ data points into two separate
numbers I and Q. We then perform outlier removal using an elliptic envelope strategy owing to the fact that individual
distributions mainly follow a normalized gaussian distribution (Fig. 5). We then scale the data for individual qubits
using StandardScaler method from the sk-learn library to impose uniformity in the data points. Finally, we split the data
into test-train-validation set in the proportion (50 : 30 : 20). Subsequently, since we are looking at supervised learning,
we also prepare the label data for training our models. To do this, we label each state by the number represented by its
corresponding bitstring. For example, |22102⟩ would be 2× 30 +0× 31 +1× 32 +2× 33 +2× 34 = 227. However,
for FNN, we encode these integer labels as one-hot encoded binary vectors of size 243.

5.2 Comparision metrics

In order to compare the performances between different models, we compute the qubit-state-assignment fidelities F ,
i.e., the measure of how many times the qubit predicted state for qi matches with the correct state that it was in during
measurement. For a qubit qi we define it as follows:
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Figure 4: Topologies of the 5 qubit IBMQ hardware from which data was acquired: (a) ibmq_rome and imbq_bogota,
(b) ibmq_belem and ibmq_quito, (c) ibmq_manila
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Figure 5: Probability distribution of IQ data obtained for the qubit q4 from imbq_belem for states (a) |0⟩, (b) |1⟩ and (c)
|2⟩. The graphs in blue corresponds to the “in-phase” component I and the ones in green corresponds to the “quadrature”
component Q.

Fi = 1− [P (0i|π0→1) + P (0i|π0→2) + P (1i|π0→0) + P (1i|π0→2) + P (2i|π0→0) + P (2i|π0→1)]/6 (8)

As you would notice, we are looking at subtracting the deviations (or mismatched) results from the total probability,
i.e., 1. But the question then arises about the sources of these deviations. In principle, these deviations exist due to
initialization errors, state transitions during the measurement, and readout crosstalk. The model that better learns about
these deviations will attain a better assignment fidelity score.

Now, once we have defined Fi for each individual qubit qi, we finally compare the discriminators using system-state-
assignment fidelity FGM , which is described at the geometric mean all of the qubit-state-assignment fidelities,

FGM = (F1F2F3F4F5)
1/5 (9)

5.3 Key Observations

Now let us look at some key observations from our experiments below.

5.3.1 Single-qubit discrimination

For measuring the capabilities for single-qubit discrimination, for each qubit qi on a given hardware, we look at the
states where rest of the other states reside in their ground state, i.e., we look at the assignment fidelities for the states
|0⟩⊗i ⊗ |qi⟩ ⊗ |0⟩⊗(N−1)−i, where |qi⟩ ∈ {|0⟩ , |1⟩ , |2⟩}. We find that for the single-qubit discrimination task, almost
all of the discriminating models (classifiers) performed almost similarly after hyperparameter tuning was performed.
We expect that this could be attributed to ease of learning boundaries on a 2-D for the three normalized distributions
with restricted overlaps.

5.3.2 Multi-qubit discrimination

For measuring the performance for multi-qubit discriminations, for each hardware, we prepared all of the qubits in all
possible 3N states. We then measured the individual Fi for each individual qubit and also the overall FGM for each
model. We present these results in the Table 1. We see that for except for imbq_rome, FNN could not satisfactorily
outperform other machine learning models such as GNB and QDA. Overall, the trends show that even the multi-qubit
discrimination performance for many models remains similar. This might be because either all of them could learn the
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Figure 6: Pulse schedule for preparing state |22102⟩ in ibmq_bogota
.

effect of crosstalk in the data or the overlaps present in-between state data points (due to noise) make it equally hard for
them. It is seen that GNB might have a slight edge over the other classifiers due to the distribution followed by the IQ
plots. In fact, we speculate that if the FNN could be designed to exploit this fact, its performance might be improved
further. To further illustrate our thinking, we look at the confusion matrices for one of the hardwares in Fig. 7. We see
that all of the states misassigned by each model have a lot of similarities.

5.3.3 Accuracy v/s Training time tradeoff

We fitted (or trained) all of our models for an explicitly similar amount of data points (243 × 1024). While DTC
was easily the most expensive model when it comes to training time, the GNB came out to be quickest and that too
with good single-qubit and multi-qubit state-assignment-fidelities. For FNN we saw that due to the presence of big
density layers, the network was soon overfitting. However, at the same time, the big density layers is important as
including some dropout might lead to loss of connection between different attributes of the data, which might have been
essential, especially for this particular case of multi-class classification. For this reason, even the training time of FNN
was competitive with the rest of the models, however, slower than when compared to GNB.
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Figure 7: Confusion matrices for multi-qubit state assignment for ibmq_bogota for the machine learning models (a)
KNN, (b) DTC, (c) GNB, (d) QDA, (e) LDA, and (f) FNN.
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Table 1: Qubit-assignment fidelity comparison across hardware and classification methods.
Hardware KNN DTC GNB QDA LDA FNN

F1 0.913 0.891 0.918 0.919 0.918 0.921
F2 0.918 0.914 0.925 0.927 0.926 0.926

ibmq_rome F3 0.975 0.963 0.978 0.978 0.978 0.979
F4 0.940 0.936 0.943 0.945 0.943 0.945
F5 0.924 0.910 0.930 0.932 0.930 0.930
FGM 0.934 0.933 0.939 0.939 0.939 0.940

F1 0.927 0.943 0.943 0.943 0.940 0.942
F2 0.941 0.953 0.953 0.953 0.951 0.952

ibmq_bogota F3 0.969 0.975 0.975 0.973 0.975 0.974
F4 0.980 0.984 0.983 0.983 0.983 0.982
F5 0.896 0.916 0.915 0.914 0.910 0.912
FGM 0.937 0.890 0.943 0.946 0.946 0.944

F1 0.957 0.946 0.958 0.958 0.958 0.956
F2 0.950 0.936 0.950 0.950 0.950 0.947

ibmq_belem F3 0.902 0.882 0.904 0.903 0.902 0.901
F4 0.987 0.983 0.988 0.988 0.987 0.988
F5 0.977 0.971 0.979 0.979 0.978 0.978
FGM 0.954 0.943 0.955 0.955 0.955 0.954

F1 0.942 0.927 0.943 0.943 0.943 0.940
F2 0.952 0.941 0.953 0.953 0.953 0.951

ibmq_quito F3 0.974 0.969 0.975 0.975 0.973 0.975
F4 0.982 0.980 0.984 0.983 0.983 0.983
F5 0.912 0.896 0.916 0.915 0.914 0.910
FGM 0.952 0.942 0.954 0.954 0.953 0.952

F1 0.922 0.904 0.926 0.925 0.926 0.917
F2 0.915 0.895 0.919 0.918 0.919 0.910

ibmq_manila F3 0.908 0.887 0.913 0.912 0.913 0.903
F4 0.922 0.903 0.925 0.924 0.925 0.916
F5 0.944 0.931 0.948 0.947 0.948 0.939
FGM 0.922 0.904 0.926 0.925 0.926 0.917
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