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Machine learning (ML) has recently facilitated many advances in solving problems related to
many-body physical systems. Given the intrinsic quantum nature of these problems, it is natural to
speculate that quantum-enhanced machine learning will enable us to unveil even greater details than
we currently have. With this motivation, this paper examines a quantum machine learning approach
based on shallow variational ansatz inspired by tensor networks for supervised learning tasks. In
particular, we first look at a classical image classification task using the Fashion-MNIST dataset
and study the effect of repeating tensor network layers on ansatz’s expressibility and performance.
Finally, we use this strategy to tackle the problem of quantum phase recognition for the Transverse
Ising and Heisenberg spin models in one and two dimensions, where we were able to reach ≥ 98%
test-set accuracies with both multi-scale entanglement renormalization ansatz (MERA) and tree
tensor network (TTN) inspired parametrized quantum circuits.

Keywords: Quantum Computing, Quantum Machine Learning, Quantum Many-body Systems, Quantum-
Classical Algorithms

I. Introduction

Machine learning (ML) offers tools and techniques to
learn and predict patterns that emerge in data. One
crucial avenue of this pattern recognition task is clas-
sification, which involves predicting class labels for the
input data and has found applications in speech recog-
nition [1], biometric identification [2], object classifica-
tion [3], disease identification [4] and many more. These
applications result from immense leaps classical ML al-
gorithms have made in dealing with various challenging
datasets. Lately, based on these successes, ML algo-
rithms have been used for problems related to many-body
physical systems, such as recognizing phases of matter
[5, 6]. Even though they have shown more promising
results for studying relevant and useful many-body sys-
tems than the best contemporary classical algorithms,
they still do not alleviate the sign problem [7], which
usually emerges in such calculations and causes an expo-
nential slowdown.

More recently, there has been an ongoing effort to
develop quantum-enhanced machine learning algorithms
that leverage quantum computers to tackle traditional
ML problems [8]. These algorithms are typically based on
a class of hybrid quantum-classical algorithms called vari-
ational quantum algorithms (VQAs), such as variational
quantum eigensolver (VQE) [9] and variational quantum
linear solvers (VQLS) [10] that have been used to find the
ground state of a Hamiltonian and solve systems of linear
equations on noisy intermediate-scale quantum (NISQ)
hardware [11]. The relatively short depth of the parame-
terized quantum circuits (PQCs) used in these algorithms
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makes them an ideal candidate for achieving good results
on NISQ devices without error correction codes. [12].

In principle, although PQCs are analogous to classical
neural networks structurally, they can exploit additional
computational resources due to the presence of quantum
mechanical phenomena such as superposition and entan-
glement [13]. The basic working principle of VQAs is
to optimize the parameters of PQC, also referred to as
an ansatz, using a classical optimization routine to min-
imize a cost function defined on measurements taken on
the qubits present in the ansatz. Therefore, the perfor-
mance of these algorithms is majorly based on the struc-
ture of the ansatz [14]. Hence, it is crucial to analyze
and have some basic insights into the ansatz for a partic-
ular problem or application to assess and improve their
trainability.

In this paper, we use a VQE-based algorithm to classify
classical and quantum data. For the former, we look at
the task of classification of Fashion MNIST dataset [15],
whereas, for the latter, we tackle the problem of classifica-
tion of the quantum phase of 1-D and 2-D transverse Ising
and XXZ Heisenberg spin system. We employ multi-scale
entanglement renormalization ansatz (MERA) and tree
tensor network (TTN) states for building the ansatz for
the variational routine. Finally, we also use expressibility
and entangling capability analysis for choosing the struc-
ture of unitary block for these ansätze (Figs. 2a and 2b)
that helps us make use of shorter-depth blocks than the
general SU(4) one suggested in [16].

Structure : In section II, we start off with a background
on quantum tensor networks and spin systems, followed
by a description of the experiments and their correspond-
ing results conducted by us in section III. Lastly, in sec-
tion IV, we provide our conclusions and discussions on
our results and future work.
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FIG. 1: Tensor network inspired variational ansätze: (a) Structure of the tree tensor network (TTN) ansatz
with bond dimension two, and (b) variational workflow using multi-scale entanglement renormalization ansatz
(MERA) tensor network.

II. Background

A. Quantum Tensor Networks

Tensor networks are essentially approximations of very
large tensors using smaller, easier to handle tensors [17].
Tensor networks like the matrix product state (MPS)
[18], tree tensor networks (TTN) [19] and multi-scale en-
tanglement renormalization ansatz (MERA) [20] can be
constructed using a quantum circuit [21, 22].

Recently, the use of quantum circuits based on tensor
networks have been explored in the domain of machine
learning for both generative [23] and discriminative tasks
[16, 21, 24]. The bond dimension of a tensor network is
the dimension of the index connecting smaller tensors to-
gether. The bond dimension, D, of a tensor network that
has been realized using a quantum circuit is 2v, where v
qubits connect different subtrees. The main motivation
behind using tensor network inspired quantum circuits is
the increase in expressibility of the ansatz with increasing
bond dimension to the point that for a sufficiently huge
bond dimension, the entire state space can be covered.
In the classical scenario, such systems will be too com-
putationally expensive to deal with [21]. Moreover, it is
highly likely that in the case of quantum data such as
the wavefunction of a system, usage of classical methods
will be intractable due to the exponential increase of in-
formation that needs to be encoded and computed with
the increase in particles.

Circuits with a hierarchical structure like that of a
MERA or TTN tensor network have been used in the
classification of images like those in the MNIST dataset
[16, 24]. A hybrid classical-quantum MPS-VQC has been
used in image classification tasks with the MPS being the
feature extractor for the images. While the MPS tensor
network in this case is classical in nature, it can be re-
placed with an equivalent quantum circuit paving the
way for the usage of quantum tensor networks as feature
extractors [25]. Various tensor network ansätze have also

been used for Quantum phase recognition tasks for the 1-
D Heisenberg [16] and Transverse Ising models [26] with
good results.

B. Spin Systems

The study of spin systems is important in order to
understand the magnetic properties of a system at a
macroscopic level. This is because the magnetic mo-
ment of an atom has contributions from the electron
spins. The alignment of many such spins on a macro-
scopic scale defines the magnetic properties of the sys-
tem. This alignment of spins is driven by the exchange
interaction between the atoms. Exchange interaction is a
short range, powerful interaction that occurs due to the
electrical forces between electrons in the atoms [27, 28].
In this paper we will deal with spin systems where the
atomic dipoles are depicted by points on a 1-D and 2-D
square lattice. The exchange interaction between atoms
is limited to nearest neighbors and is given by the general
formula:

ε = αS1.S2 + βSZ
1 S

Z
2

S1 and S2 are the spins of the two neighboring atoms
in question. We will be considering variants of the spe-
cial case of α = 0 and β = J which is the Ising model of
interaction and α = J and β = 0 which is the Heisenberg
model of interaction [27]. Spin systems undergo quantum
phase transitions. A quantum phase transition is a point
of non-analyticity in the energy graph of the ground state
of the Hamiltonian of the system caused due to quantum
fluctuations at 0 K [29]. Since many complex models can
be approximated as spin systems, quantum phase recog-
nition allows us to derive and understand the properties
of such systems.
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FIG. 2: Unitary blocks and their analysis: The possible choices of of unitary blocks for building variational
ansätze are (a) V (θ⃗), which can represent any element from SU(4) group, and (b) U(θ⃗), which is a two-qubit
entangling unitary. For comparing the effectiveness of built TTN and MERA tensor network ansätze, we perform
(a) expressibility analysis based on the Jensen-Shannon divergence of fidelity distributions of generated
parameterized states with that of Haar states (lower the better), and (b) entangling power analysis based on the
Meyer-Wallach measure (higher the better)

III. Experiments and Results

A. Circuit Architecture

We have used Tree Tensor Network (TTN) and
the Multi-scale Entanglement Renormalization Ansatz
(MERA) in our experiments. The TTN ansatz has a
binary-tree-like structure with unitaries applied to the
adjacent nodes, as shown in the Fig. 1a, which depends
on the bond dimension D of the tensor network. As men-
tioned earlier, the bond dimension equals D = 2v, where
v is the number of qubits connecting the subtrees. In
our case, we have used v = 1; therefore, our ansatz has
a bond dimension two. On the other hand, the structure
of the MERA tensor network can be explained using a
TTN itself, where it can be constructed by adding a set
of unitaries to consecutive nodes of the TTN as shown in
Fig. 1b.

The choice of the unitary block UB(θ⃗) is a crucial one,
which depends on D and results in varied performance
between different ansatz structures. In our case, we com-
pare the performance of MERA- and TTN-based ansatz
built using the unitary block V̂ (θ⃗) and Û(θ⃗) based on
metrics of expressibility and entangling capability de-

fined in the qLEET library [14]. In particular, we want
our ansatz to be more expressive and capable of gen-
erating entanglement. For the former, we compare the
divergence using the Jensen-Shannon distance (JSD) be-
tween the fidelity distributions for the states generated
by Haar Random unitaries (PHaar(F)) and the ansatz
(P̂PQC(F , θ⃗)). The smaller this divergence, the closer
ansatz is to a Haar random unitary and hence more ex-
pressive it comes out to be. In contrast, to compare
the latter, we use an entanglement measure known as
the Mayer-Wallach measure, which quantifies the aver-
age entanglement in all the states produced by an ansatz
by measuring the average linear entropy over all possible
single-qubit subsystems.

We present the structure description of U(θ⃗) and V (θ⃗)
in Figs. 2a and 2b. The first one is a general element
of the SU(4) group and comprises four controlled-NOTs
and 15 single-qubits rotations. In distinction, the other
is a two-qubit entangler gate comprising three controlled-
NOTS and six single-qubit rotations. In the Figs. 2c and
2d, we look at expressibility and entangling capability, re-
spectively. As a general trend we see that MERA-based
ansatz is more expressible and generated more entangled
states than TTN-based ansatz. Additionally, amongst
U(θ⃗) and V (θ⃗), in both the cases, for single layered cir-
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FIG. 3: Performance of the MERA tensor network ansatz with different layers

cuits (L = 1), the ansatz built using U(θ⃗) comes out to
be more effective than V (θ⃗). Moreover, since the num-
ber of variational parameters are lesser in case of the U(θ⃗)

and V (θ⃗) are in the ratio 2 : 5, the former will be much
more easier to be optimized and hence will be more scal-
able for the larger systems. Moreover, while in the case
of expressibility, for multiple layers (L > 1), for each
MERA- and TTN-based ansatz, the circuits with U(θ⃗)

and V (θ⃗) becomes equally expressible, but the former is
still able to produce more entangled states than the lat-
ter. Therefore, based on these observation we have used
tensor network ansatz based on the UB = U(θ⃗).

B. Tasks

1. Image Classification

a. Dataset

We have conducted the image classification tasks on the
Fashion-MNIST dataset [15]. It is a set of 28 × 28 gray
scale images with 10 classes (tshirt, trousers, pullover
etc.) with 6000 train and 1000 test samples in each class.
Most of the image classification tasks done using quan-
tum tensor networks use the MNIST dataset [30]. We
have chosen the Fashion-MNIST dataset is less overused
as it is more complicated than the MNIST dataset, which
is essentially solved at this point [31]. Therefore obtain-
ing better accuracies at Fashion-MNIST would better
represent the effectiveness of the learning models.

b. Encoding Strategy

In order to process classical data using a quantum circuit,
we first need to embed it in a quantum state. For our ex-
periments, we have used amplitude embedding in which

FIG. 4: 2-D lattice of eight spins in paramagnetic state

encoding an image of size N×M will require log2(N×M)
qubits. Each image of size 28 × 28 is first converted to
a linear vector of size 1 × 282. In case the image size
is too large to process, it is first resized and then trans-
formed into the image vector. The image vector is then
mapped to a state in the Hilbert Space. A variety of fea-
ture maps can be used for this purpose. So each image
in the Fashion-MNIST dataset was first resized and con-
verted to an image vector. The image vector was then
normalized and encoded into the amplitudes of an eight
qubit quantum state.

c. Optimization and Hyperparameters

The ADAM optimizer [32] was used to optimize the train-
ing process with a learning rate of 0.01. A mini-batch
size of 20 was used and the model was trained over 40
epochs. We used the categorical cross entropy as the loss
function. The measurement taken on the third qubit was
used to calculate the loss along with a softmax function
for pairwise accuracy calculations.

d. Results

We used eight qubit ansatz based on both TTN and
MERA tensor network states. Amongst them, the lat-
ter one obtained reasonably better results for all pairs of
classes of the Fashion MNIST dataset and therefore we
present only its results here. Predictably, we see a better
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T-shirt -
Trouser 0.953 -
Pullover 0.894 0.966 -
Dress 0.8655 0.9155 0.9615 -
Coat 0.8315 0.944 0.6695 0.8875 -

Sandal 0.9085 0.977 0.9745 0.9795 0.8925 -
Shirt 0.759 0.9405 0.665 0.8935 0.6435 0.9725 -

Sneaker 0.988 0.992 0.9925 0.993 0.995 0.7765 0.994 -
Bag 0.9155 0.9645 0.939 0.9445 0.8975 0.7895 0.9335 0.9215 -

Ankle boot 0.9845 0.9815 0.993 0.98 0.98 0.79 0.9845 0.8925 0.9895 -
Layer: 1 T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot

TABLE I: Pairwise accuracy on the classes of the Fashion MNIST dataset for one layer of the MERA tensor network

T-shirt -
Trouser 0.9585 -
Pullover 0.9375 0.974 -
Dress 0.8805 0.9445 0.9655 -
Coat 0.8955 0.959 0.7385 0.891 -

Sandal 0.982 0.986 0.989 0.9915 0.98 -
Shirt 0.7875 0.963 0.7415 0.9005 0.7375 0.9825 -

Sneaker 0.992 0.9945 0.9955 0.9965 0.998 0.807 0.9955 -
Bag 0.968 0.9775 0.958 0.962 0.973 0.94 0.9475 0.964 -

Ankle boot 0.989 0.986 0.998 0.9915 0.992 0.799 0.992 0.8975 0.9915 -
Layers: 3 T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot

TABLE II: Pairwise accuracy on the classes of the Fashion MNIST dataset for three layers of the MERA tensor
network

T-shirt -
Trouser 0.959 -
Pullover 0.939 0.9755 -
Dress 0.8895 0.9515 0.9655 -
Coat 0.9285 0.964 0.7485 0.8965 -

Sandal 0.99 0.9915 0.995 0.992 0.9935 -
Shirt 0.788 0.964 0.747 0.905 0.774 0.9865 -

Sneaker 0.9925 0.9975 0.999 0.9975 0.9985 0.8105 0.997 -
Bag 0.9695 0.9775 0.963 0.969 0.974 0.9425 0.955 0.9805 -

Ankle boot 0.99 0.9885 0.9985 0.9945 0.992 0.8315 0.9965 0.898 0.994 -
Layers: 5 T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot

TABLE III: Pairwise accuracy on the classes of the Fashion MNIST dataset for five layers of the MERA tensor
network

performance on classes that are more unlike each other
like Pullover vs Ankle boot (99.3%) than classes that are
similar to each other like coat and shirt(64.35%).

Increasing the number of layers to three and five has
shown an increase in the pairwise accuracy especially in
our previous case of the coat and shirt labels where the
accuracy increases from 64.35% to 73.75% to 77.4% as
can be seen in Tables I, II and III. Such a trend is ob-

served in most classes where one layer of the MERA or
TTN ansatz did not perform very well.

We observe a bigger difference in accuracy when go-
ing from one layer to three layers than when going from
three layers to five layers. In fact, in most cases, we see a
similar performance in ansätz with three and five layers.
Fig. 3 shows the pairwise accuracy for certain pairs of
classes as the number of layers is increased, which cor-
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Spin Model Lattice Tensor Network States Test Accuracies

8 spins

(on simulator)

4 spins

(on IBMQ Nairobi)

Heisenberg Line MERA 98.6 ± 0.7 74

Heisenberg Line TTN 96.5 ± 1.03 72.6

Transverse Ising Line MERA 99.8 ± 0.06 88.2

Transverse Ising Line TTN 98.3 ± 0.1 84.5

Heisenberg Square MERA 98.5 ± 0.88 68.6

Heisenberg Sqaure TTN 96.3 ± 1.25 64.0

Transverse Ising Square MERA 99.8 ± 0.06 73.6

Transverse Ising Square TTN 98 ± 0.09 72.1

TABLE IV: Performance of the TTN and MERA tensor networks on recognizing correct phases of various spin
systems on line and square lattices. For eight spins systems, simulations were performed numerically on a quantum
simulator and results were averaged over five trials. Whereas, for the four spins systems, experiments were executed
on the IBMQ Nairobi, a seven-qubit quantum hardware and the best results out of 3 trials are being reported here.

roborates the increasing trends of expressibility and en-
tangling power in Figs. 2c and 2d.

2. Quantum Phase Recognition

a. Models and Data generation

1. 1-D Transverse-field Ising Model

The Transverse-field Ising Model in 1 dimension is char-
acterized by the Hamiltonian:

Ĥ(h) = J

n∑
i=1

σ̂z
i σ̂

z
i+1 + h

n∑
i=1

σ̂x
i

Where J is the coupling constant, h the external mag-
netic field and σz

i and σx
i are the Pauli matrices Z and

X acting on the ith spin. We have taken J = 1 in our
experiments. When h < 1, the nearest neighbor term
dominates. This leads to the spins aligning in either an
up or down direction. This results in a disordered para-
magnetic phase. For h > 1, the 2nd term dominates. The
spins end up aligning themselves with the external mag-
netic field leading to an ordered ferromagnetic phase. A
phase transition occurs at h = J [29].

In our experiments, we have generated 1000 ground
states for line systems with four and eight spins using
the given Hamiltonian with J = 1 and h varying from 0
to 2J .

2. 1-D XXZ Heisenberg Model

The energy of the 1-D XXZ Heisenberg Model is de-
scribed using the Hamiltonian:

Ĥ(h) = J

n∑
i=1

σ̂x
i σ̂

x
i+1 + σ̂y

i σ̂
y
i+1 +∆σ̂z

i σ̂
z
i+1

Where J is again the coupling constant and taken as
1 in our experiments. ∆ introduces anisotropy in the
interaction in the z axis. It is observed that for ∆ → ∞,
the system is in the antiferromagnetic/ Néel state i.e all
neighboring spins are alternating i.e spin up or down.
As ∆ approaches 1, the system changes such that all the
spins are now in the x−y plane for ∆ < 1. The system in
this case is in a paramagnetic phase [27]. As ∆ reduces
further, for ∆ < −1, all the spins arrange themselves
in the same direction resulting in a ferromagnetic phase.
Clearly, for J = 1, a phase change occurs at ∆ = 1 and
−1 [27, 33].

The data for the 1-D XXZ Heisenberg Model was gen-
erated for line systems with four and eight spins using
the given Hamiltonian with J = 1 and ∆ varying from
-2 to 2 for a 1000 points.

3. 2-D Transverse-field Ising Model

The 2-D Transverse-field Ising model has the same
Hamiltonian as the 1-D case. However, a phase tran-
sition is observed at h ≈ 3J [34]. The data is generated
for a 1000 points for a 2-D lattice of four and eight spins
(2 × 4) using the given Hamiltonian with J = 1 and h
varying from 0 to 6J . The phase transition is seen at
h = 3J . Fig. 4 shows a 2-D lattice of spin systems.
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FIG. 5: Prediction probabilities of phases with MERA based ansatz: (a) for transverse-field Ising model in
1-D case (noiseless simulation), and (b) For transverse-field Ising model in 2-D case (executed on IBMQ Nairobi, a
7-qubit hardware)

4. 2-D XXZ Heisenberg Model

The 2-D XXZ Heisenberg Model has the same Hamilto-
nian as the 1-D case with a phase transition occurring at
∆ = 1 and -1 as well [35]. The data generation process
is the exact same as that in the 1-D case.

b. Training

The circuit was training using the variational quantum
algorithm as shown in Fig 1b. The data was split ran-
domly into train, validation and test sets in the ratio
3 : 1 : 1. Measurements were taken on the third and
sixth qubits and cross entropy loss was calculated. A
batch size of 8 was used with a learning rate of 0.002 for
the MERA ansatz and 0.0008 for the TTN ansatz. The
ADAM optimizer [32] was used to optimize the training
process over 2000 iterations.

c. Results

We see that both the MERA and the Tree tensor net-
work perform well on the Heisenberg and the Transverse
Ising models in both 1-D and 2-D. The MERA tensor
network gives slightly better results as compared to the
tree tensor network. The networks perform better on the
Transverse Ising model overall than the Heisenberg model
(Table IV). Moreover, the performance of both the tensor
networks on the 1-D case is better than the more compli-
cated 2-D case. Fig. 5a shows the results outputted by
our model. When the probability of a phase is more than
50% we assign our output the label corresponding that
phase. We see that our model is more confident when the
value of h is further from the point of phase transition
i.e. when h is 1. Fig. 5b shows the values our model out-
puts when the models were trained and executed on the
IBMQ Nairobi, which is their 7-qubit superconducting
quantum hardware.

IV. Conclusions

In this paper, we have studied the performance of
quantum tensor networks for image classification tasks
and quantum phase recognition tasks of spin systems.

We have extended the previous works done in this do-
main in the following two ways. First, we have presented
a strategy based on metrics like expressibility, and entan-
gling capability of the parameterized circuits to choose
a well-suited block structure for the tensor-network in-
spired ansäatze. Such analysis was corroborated by the
results obtained for the task of image classification, where
we were able to increase the performance of our classi-
fiers by increasing the number of layers of the circuits.
Second, for the quantum phase recognition task, we have
attempted to study spin systems on 2-D lattices with the
tensor-network ansatz, which are generally more chal-
lenging than those on 1-D spin lattices that have been
studied in the literature until now [16, 26].

In the image classification task, the pairwise accura-
cies between the different classes of the Fashion-MNIST
dataset were calculated for 1, 3, and 5 layers of the
MERA tensor network ansatz. The results are shown in
Tables I, II and III. We see a clear increase in accuracy
when the number of layers is increased, especially when
we go from a single layer to three layers. The perfor-
mance of the ansatz with five layers is slightly more than
when three layers are used. This is corroborated by Fig.
2c, where we see a marked increase in the expressibility
of our circuit when the number of layers is increased from
one to three but not a lot of increase when going from
three layers to five. In pairs of classes where one layer of
the ansatz performed poorly, like coat vs. shirt or sandals
vs. sneakers, we see an appreciable increase in accuracy
with an increase in layers. Possibly, this happens because
the layered structure allows correlation to be distributed
more effectively among the qubits allowing the system
to evolve to the states that were not previously possible.
More explicitly, ansatz becomes more expressible with
each layer, and its entangling power also gets enhanced.
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This can be easily seen in the results we obtain for the
entangling power analysis as shown in Fig. 2d, where en-
tanglement measures for both TTN and MERA follow a
similar exponential trend of improvement with each layer
before plateauing down.

In the quantum phase recognition tasks, we first use a
VQE-based variational routine with a hardware efficient
ansatz to prepare these systems in the ground state of
the Hamiltonian for each spin system instance. This en-
ables us to take care of the sign problem by employing
the hybrid quantum-classical routine. Furthermore, the
TTN and MERA tensor network ansatz results indicate
their effectiveness at solving many-body physics prob-
lems. However, among the two, we find that MERA is su-
perior in performance for such tasks than TTN, possibly
due to being more expressible and generating more en-
tanglement in the states it evolves. In addition to this, we
also see that it was much easier for tensor-network-based
ansatz to work for the Transverse Ising model, which has
simpler interaction terms than the XXZ Heisenberg mod-
els. This is in agreement with the previous results for
these two models [26]. Moreover, even for a given model,
we see that results for linear 1-D systems were better
than those for the system on 2-D lattices. This is again
due to fewer interacting terms, as seen in the previous ob-
servation. Finally, we also executed our classifiers on the
actual quantum hardware, IBMQ Nairobi, for classifying
phases of four spin systems for both 1-D and 2-D cases.
We see that even though there’s a decreased performance
due to the noise present on the device, it was still able to
classify the phases decently (Fig. 5b). We speculate that

this performance can be further improved by employing
specific error mitigation techniques like those available in
Mitiq [36].

Overall, our studies have shown promising results in
both tasks, and we conclude that tensor-network-inspired
ansatz is an ideal candidate for quantum-enhanced learn-
ing of both quantum and classical data. For quantum
data, further studies need to be done on tasks such as the
phase recognition task on larger, more complicated sys-
tems, like systems with 16 or 24 spins, to see how scalable
our current model is, which is something we are currently
pursuing. On the other hand, for the classical data, more
specifically, for the image classification tasks, more work
is required to study higher resolution images that would
require much better encoding strategies, which is another
area of our interest.

Data Availability

The code created to run the presented simulations and
any related supplementary data could be made available
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